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Abstract

Imprecision and uncertainty in systems can often
be expressed with interval models. The result of
the simulation of these models can be represented
in the form of envelope trajectories. These en-
velopes can be characterised by several properties
such as completeness and soundness which lead to
the concept of overbounded and underbounded en-
velopes. Simulation of such interval models can
be performed by several means including quanti-
tative, qualitative and semiqualitative techniques.
Whereas existing simulators do not provide any in-
formation about the ”error” with respect to the
exact envelope, a method to obtain error-known
envelopes is proposed. It is based on the simul-
taneous computation of an underbounded and an
overbounded envelope. Both envelopes are com-
puted by means of Modal Interval Analysis. A way
of controlling the error of the envelopes and adjust
it to the desired value is presented.
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1 Introduction

Most of the existing simulators need a mathemati-
cal model in which the values of the parameters are
real numbers. This implies that the user must have
a totally deterministic knowledge of the system.
However, complex systems are often subjected to
uncertainties that make such a model difficult if not
impossible to obtain. A precise model cannot rep-
resent the behaviour of such systems which require
an explicit representation of imprecisions and un-
certainties. A special case is when the uncertainties

are structured: only the parameters undergo im-
precisions but the model structure is known. This
case can be handled with interval models in which
the equation parameter values are allowed to vary
within numeric intervals. For instance, such an in-
terval model could be given by the following trans-
fer function with interval parameters which repre-
sents a linear differential relation between an input
u(t) and an output y(t):

(2,3] s+ [1,3]
[1,2] 52+ [3,5] s + [2,4]

(1)

in which s is the Laplace variable and U(s) and
Y (s) are the input and output Laplace transforms,
respectively. Actually, a precise model can be
viewed as an interval model in which the interval
widths are zero. As interval widths decrease, pre-
cision increases [12].

The results of the simulation of such interval
models is in the form of envelope trajectories (or
envelopes for short)[6] [24]. The most common use
is for Fault Detection (FD) as it provides a way to
compute automatically and in a model-based sound
manner adaptive alarm thresholds for every variable
[22]. The envelopes can be characterised by sev-
eral properties, the main ones being completeness
and soundness which lead to the concepts of over-
bounded and underbounded envelopes which have
radical consequences on the robustness and sensi-
tivity of the FD system.

The simulation of interval models can be per-
formed by several means including quantitative,
qualitative and semiqualitative techniques. Ex-
isting simulators do not provide any information
about the ”error” with respect to the exact enve-
lope. A method to obtain error-bounded envelopes



is proposed. It is based on the simultaneous com-
putation of an underbounded and an overbounded
envelope. Both envelopes are computed by means
of Modal Interval Analysis. A way of controlling
the error of the envelopes and adjust it to the de-
sired value is also provided.

The next section defines the envelopes and their
properties in relation to the fault detection prob-
lem. Section 3 discusses the related work and pro-
vides a summary of the existing simulators that can
be used to generate envelopes, putting special em-
phasis on simulators based on interval arithmetic.
In section 5 a method to generate error-bounded
envelopes is presented. This method is based on
Modal Interval Analysis, which is presented in sec-
tion 4, and applied to the envelope generation prob-
lem in section 6. Finally, some conclusions and di-
rections for the future work are discussed.

2 Envelopes and their prop-
erties in relation to Model-
based Fault Detection

When simulating an interval model, which actually
represents a whole set of models, the state space is
a compact set which can be represented by an enve-
lope trajectory for every variable. All the possible
behaviours starting from a specific initial state are
compacted within a unique curve. This envelope
hence includes a whole family of temporal curves,
like the one displayed in figure 1.
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Figure 1: The bounds of the envelopes are two
curves

The size of the envelope is critical. If it is too
tight there are systems belonging to the model set
whose output is outside the envelope. Such an en-
velope is not complete, taking the definition that a
complete envelope is one that includes all possible

behaviours [21]. On the other hand, if the envelope
is too wide it includes zones that cannot be reached
by any of the systems belonging to the set. Such
an envelope is not sound. Our definition of a sound
envelope is that every point inside the envelope be-
longs to the output of at least one of the systems
belonging to the set. A complete but not sound en-
velope is an overbounded envelope. A sound but not
complete envelope is an underbounded envelope.

The ultimate goal is to generate a complete and
sound envelope, that is the ezxact envelope. How-
ever, more realistic goals are to produce either a
minimally overbounded envelope or a minimally
underbounded envelope.

3 Related work:
simulators

envelope

There are many simulators that can be used to gen-
erate envelopes. They can be classified into differ-
ent groups depending on the information used for
the simulation: quantitative, qualitative or semi-
qualitative [1]. A detailed survey of these simula-
tors can be found in [2]. Among the semiqualitative
simulators there are methods based on quantitative
simulation ([3] [4] [5] [11] [12]), methods based on
qualitative simulation ([3] [12] [13]) and methods
based on interval arithmetic, which are the ones
that are directly related to the approach exposed
in this paper.

Interval arithmetic [18] allows to consider the
whole continuous range of possible instances repre-
sented by an interval model. This is due to the nat-
ural extension and one of its properties: monotonic
inclusion.

Definition 1 The natural extension of a rational
function is the one obtained by substituting real
arguments by intervals and rational operations by
their arithmetic interval extensions.

Theorem 2 (Monotonic inclusion) Given
f(z;), a real function, and F (X;), its natural
extension, then x; € X; implies f (z;) C F (X;).

In consequence, the natural extension gives a
guarantee on the result: no function in the class
can take values outside the range computed using
interval arithmetic. Unfortunately, it does not pro-
vide the exact result (complete and sound) in the
general case. This comes essentially from the two
following problems:



e The multi-incidence problem: interval arith-
metic considers that each incidence of a vari-
able in a function is independent of the other.
Similarly, it is unable to take into account
other dependencies. The compiled range is
hence overbounded.

e The wrapping problem: the state, at some time
point, of a system with interval parameters
may be represented by an hypercube. How-
ever, it may be that the system’s state does
not evolve into another hypercube at the next
time point. In figure 2 an example with two
state variables is shown: the hypercube is a
rectangle. It transforms into a rhombus at the
following time step (it could actually evolve
into any two dimensional shape). The projec-
tion of this rhombus on the variable axis leads
to a new rectangle which obviously includes
spurious states, as shown in the figure. There-
fore, the obtained envelopes are overbounded.

AN

Figure 2: The wrapping problem

Some semiqualitative simulators based on inter-
val arithmetic are presented in [6] [12] [14] [16] [18]
and [24].

All these simulators produce overbounded en-
velopes. Some methods use fuzzy sets: all of them
take the a-cut of the fuzzy sets and end up using
interval arithmetic. Some of them are presented in
[7] and [20].

4 Modal Interval Analysis

Modal Interval Analysis [8] [9] [10] extends real
numbers to intervals, identifying the intervals by
the predicates that the real numbers fulfil, unlike
classical Interval Analysis which identifies the in-
tervals with the set of real numbers they contain.

In the following, some of the properties of modal
intervals that are interesting for envelope genera-
tion are stated.

Given the set of closed intervals of R, I(R) =
{la,b] | a,b € R, a<b}, and the set of logical ex-
istential and universal quantifiers {E, U}, a modal
interval is defined by a pair

X:=(X,Q) (2)

where X’ € I(R) and Q € {E,U}. QX is the
modality and X', called extension, is an interval in
the classical sense, i.e. a set of real numbers. The
canonical notation for modal intervals is:

b oo

a1, 3] = {

A modal interval ([ay, as]’, E) (the classical one)
is called ”existential interval” or ” proper interval”
and denotes one value within the interval bounds.
On the other hand, a modal interval (ag,a1]’,U)
is called ”universal interval” or ”improper inter-
val” and denotes all the values within the inter-
val bounds. Thus, the proper interval [1, 3] points
at some real number between 1 and 3 and the im-
proper interval [3, 1] points at any real number be-
tween 1 and 3.

The rational operations between modal intervals
are extensions of classical interval arithmetic with
the addition of the dual operator defined by:

([a’lza’Q]/zE) if ai S a2
([GQ,al]/,U) if al Z a2

(4)

The dual formulation of the modal intervals al-
lows to define two modal interval extensions of a
continuous function f: f*(X) and f**(X). The
modal interval extension represented by f*(X)
may be interpreted as

Dual(lay, az]) = [az, a1]

[X) € FX) U (n,X,) (5)

Q2. F (X)) B (0, X}) (2 = F (wp. 22))

where X, and X; are the proper and improper com-
ponents of X, respectively. This interpretation can
be read: ”For all elements belonging to the proper
intervals there exists at least one element in the
improper intervals that fulfil the function”.

Example 3 [10,20] + [20,15] = [30, 35] means

U (a,[10,20)') B (f,130,35]")
E (b,[15,20) (a+b = f)

(6)

Example 4 [10,20] + [15,20] = [25,40] means

U (a,[10,20]") U (b,[15,20]")
E(f,125,40]') (a+ b= f)

(7)



On the other hand, the semantic interpretation
of the f** (X) extension is dual:

F(X) S f*(X) <= U (2:X;)

Q (2, Dual (F (X)) E (., X,
(2 = f(@p, )

The computation of f*(X) and f**(X) is not
always possible. The usual procedure is to find
overbounded computations of f*(X) and under-
bounded computations of f**(X) which maintain
the semantic interpretations. To this respect, an
aspect to be taken into consideration is the round-
ing of computations. Computers work with digital
numbers, not with real numbers. In order to main-
tain the semantic interpretations, direct roundings
(up or down) have to be used.

If f is a rational function, there are some the-
orems in Modal Interval Analysis that allow to
obtain the exact range of f in some cases or
overbounded computations of f*(X) and under-
bounded computations of f** (X) in other cases.

(8)

Definition 5 A modal interval extension fR(X)
of f in X is optimal if

fT(X) = fR(X) = ™ (X) 9)

The following theorem provides the conditions
and the way to obtain optimal extensions.

Theorem 6 Given fR(X), a rational interval
function defined in a parameter space Prop(X),
tree-optimal and totally monotonic for each multi-
incident component of X. Let XD be an en-
larged vector of X obtained considering each multi-
incident component as independent and transform-
ing it into its dual if it is antitonic (the monotonic-
ity of this incidence and the monotonicity of the
component have opposite senses). In this case,

f7(X) = fR(XD) = [ (X)

2

(10)

Example 7 Given f = x* — zy and the parame-
ter space v = [2,4] and y = [1,2], the range of the
function obtained by its natural extension is f* (X)
C [—4,14]. The exact range can be computed apply-
ing theorem 6 and is f* (X) = f**(X) = [2,4]° —
Dual ([2,4]) [1,2] = [0,12]

If the function is not monotonic for each multi-
incident component, theorem 6 can be partially ap-
plied in order to reduce the complexity of the prob-
lem. For instance, given an n variable function, the

problem of finding the range of this function in a
domain in which the function is monotonic with
respect to r variables, can be reduced to evaluate
the range of an interval function of n — r variables.
Therefore, the problem complexity has a lower or-
der.

Example 8 Given f = zy — 22 — 2y and the pa-
rameter space v = [1,2] and y = [3,4], the range
of the function obtained by its natural extension is
f*(X) C[-9,1]. The function is totally monotonic
with respect to y

af

fn} — = |— <
99 x—2=[-1,001<0

(11)
but it is not totally monotonic with respect to x

%:y—Qa::[—l,Q]BO

o (12)

Theorem 6 can be applied to y and hence a better
approximation of the range of the function is ob-
tained:

f*(X) C aDual (y) —2* =2y = [-8,-1] (13)
A way to obtain even a better approximation is by
splitting the parameter space. The advantage is that
now only the variable x must be split. Moreover,
the range in each sub-space can be computed more
exactly because the modality of each incidence of
the variable y is already known.

As a conclusion, the number of sub-spaces to be
made in order to compute an approximation of the
range of the function is smaller when modal inter-
vals are used. This is illustrated in [23], in which
modal intervals combined with a branch-and-bound
algorithm have been applied to the analysis and de-
sign of robust controllers.

5 Using modal intervals for
generating and controlling
error-bounded envelopes

The properties of the simulators presented in sec-
tion 3 can be exhibited only in a binary manner.
For example, all the interval based simulators are
complete but not sound, i.e. they provide over-
bounded envelopes. A step forward would be to
produce some kind of measure of the degree of over-
bounding, in other words to be able to evaluate the
”error” of the obtained envelope with respect to the



exact one. However, the exact envelope is of course
not known. The exact envelope problem is actually
highly complex as it requires global optimisation
tools for non linear and non convex functions.

The alternative way proposed in this paper is to
bound the error, i.e. to determine the maximum
distance. This is achieved by computing both an
underbounded envelope and an overbounded enve-
lope. The distance between these envelopes indeed
gives the maximum error. These envelopes are de-
fined as error-bounded envelopes.

Moreover it is shown that the maximum error
can be controlled by widening the underbounded
envelope or by tightening the overbounded one.

The generation of the underbounded and over-
bounded envelopes is approached in an original way
by using Modal Interval Analysis.

5.1 The multi-incidence problem in
the simulation task

Interval based methods are based on the reformula-
tion of the simulation problem into an optimisation
problem.

The behaviour of a n-th order dynamic system
can be represented by the following difference equa-
tion:

Ye+1 = Zaiyt—i + ijut—j (14)
i=0 J=0

in which it can be observed that the output of the
system at any time point (y;11) depends on the
values of the previous outputs (y;—;) and inputs
(u¢—;). This dependency is given by the parame-
ters of the system (a; and b;). Hence, finding the
limits of the envelope at a given time point is equiv-
alent to finding the maximum and the minimum of
a function into a parameter space. This is a global
optimisation problem. Nevertheless, the computa-
tional cost of a global optimisation algorithm is too
high to use them for this task.

There are many different methods for global op-
timisation, but many of them have no guarantee
of finding the global optimum. In the case of the
envelope generation problem, a local optimum re-
sults in an incomplete (underbounded) envelope.
Moreover, the computational effort needed by these
methods is very high because they search the op-
tima trying to minimize the error as much as pos-
sible. For most of the applications it is not needed
to have a very small error and therefore it is not
necessary to make such a computational effort.

Conversely, global optimisation methods based
on the interval arithmetic obtain overbounded re-
sults as stated by the monotonic inclusion prop-
erty (see. section 3). This comes from the multi-
incidence problem. In the following, two types of
multi-incidences are pointed out.

The first type of multi-incidence comes from the
fact that, in a difference equation like the one shown
above, some parameters may appear several times.
For instance, the transfer function representation
of a generic first order system is:

Y (s) k

F(S):U(s) T s+l

(15)

in which k is the static gain and 7 is the time con-
stant. If this transfer function is discretised by the
Euler method, the difference equation representa-
tion of this system is:

T kT
ye=(1- p Ye—1 + Tut—l

in which T is the sampling period. As it can be
seen, T appears more than once in this equation. If
the equation is rewritten, renaming the parameters
as follows:

(16)

a:<1—2>andb:H (17)
T T

the situation is even worse because the multi-
incidences do not appear explicitly. This is the
reason for avoiding intermediate operations: each
time an intermediate operation is performed some
information is lost. Going deeper, k and 7 them-
selves include implicit multi-incidences with respect
to the physical parameters of the device!

The second type of multi-incidences is particular
to the simulation mechanism as the equations are
taken at different time points. For instance, the
difference equation at the time point ¢ + 1 of the
generic first order system used above is:

T kT
Yep1 = | L —— |y + —uy
T T

As it can be seen, y;, 7 and k appear both in the
difference equation for time point ¢ and ¢ + 1. It
should be noticed that these multi-incidences can
be treated as independent variables for systems
whose parameters are known to vary in time. On
the other hand, they must be treated as so if the
physical system is assumed to be invariant.

(18)



5.2 The proposed method

The proposed approach is to make the multi-
incidences explicit by merging the different equa-
tions starting from 0 into a unique expression on
which the optimisation is performed. This expres-
sion is obtained in a recursive way by substituting
y¢ within equation 18 down to yg. For instance, in
the case of a first order system the following ex-
pressions will be used:

T kT
Y1 = <1——>y0+—u0 (19)
T T
T\? T\ kT kT
y2. = (1=—=) o+ (l1—=]—u+—uo
T T) T T
T\? T\? kT
y3 = (1——) wo+|(1——=) —uo+
T T T
T\ kT kT
+ 17? — U —Us

Modal Interval Analysis then provides an effi-
cient tool to perform the optimisation task taking
the multi-incidences into account. Moreover, the
two semantic interpretations provided by modal in-
tervals are directly applicable to compute the over-
bounded and the underbounded envelopes:

e Overbounded envelope. Its semantics is: ”-

For every (universal quantifier) model parame-
ter, input and initial state, the output belongs
to the envelope (existential quantifier)”, which
corresponds to f* (X) (see equation 5).

e Underbounded envelope. The semantics is
dual: ”For every output belonging to the en-
velope there exist parameter, input and initial
state values that produce this output”, which
corresponds to f** (X)) (see equation 8).

Therefore, Modal Interval Analysis can be used
to compute both envelopes.

6 Practical
and examples

implementation

In section 4, some tools of Modal Interval Analysis
that are useful for envelope generation have been
described. Omne limitation of these tools is that it
is necessary to differentiate the function in order
to apply theorem 6, hence restricting the method

to differentiable functions. However, the discrete
representation of the system used in our simulation
problem is differentiable.

A simulator based on these tools has been im-
plemented. It uses Matlab version 5.1 for Unix
[17]. Symbolic computations are performed with
Maple V r4 [15] through the Symbolic Math Tool-
box. Moreover, it uses C+4+ programs as MEX-files
to perform modal interval computations with direct
roundings and to accelerate the branch-and-bound
algorithm.

The implemented simulation algorithm is the fol-
lowing:

Modal Interval Branch-and-bound Algo-
rithm
Given a function in a space
/* The exact range of the function can be computed if
there are not multi-incidences */
Modality of uni-incident variables is not changed
IF all variables are uni-incident THEN
Exact result
END
ENDIF
Calculate internal approximation
DO
External = internal
DO /* The monotonicity of the function is studied
in order to apply theorem 6*/
Get subspace
FOREACH variable with unknown modality
IF 0¢first derivative THEN
fix modality
ENDIF
ENDFOREACH
IF all modalities are known THEN
/* Application of theorem 6 where possible */
Calculate partial exact
Internal = internal V partial exact
External = external V partial exact
ELSE
/* Division of subspaces if necessary */
Calculate partial internal.
Internal = internal V partial internal.
Calculate partial external
External = external V partial external
Divide subspace
ENDIF
WHILE remaining subspaces
IF error<e THEN
final=1
ENDIF
WHILE final=0
END



As an example, figure 3 shows the envelopes ob-
tained for a generic first order system with the fol-
lowing parameters:

e static gain: & = [0.95,1.05]
e time constant: 7 = [3, 20]
e initial state: yo =0

e sampling time: T =1 s

e input: steps of different lengths and magni-
tudes

e maximum error of the envelopes ¢ < 0.2

input

0 10 20 30 40 50
time (s)

output

0 10 20 30 40 50
time (s)

Figure 3: Example of simulation

In this figure, the solid line is the overbounded
envelope and the dotted line is the underbounded
one. The error between the two envelopes is not
very small, but sufficient in most cases, for instance
for fault detection. This allows to obtain useful
results with a computational effort much lower than
the one needed to obtain similar results using global
optimisation algorithms.

Another example is the one shown in figure 4,
in which the same system as above is excited with
a sinusoidal input. On the right, a high frequency
white noise has been added to the input, whereas
on the left the input is the same but without the
noise. The interesting comment about this exam-
ple is that, as it can be seen on the figures, a
significant amount of noise has been ”absorbed”
by the envelopes. Indeed, the envelopes produced
with or without noise have a much higher similarity
than the noisy and non noisy inputs. In particu-
lar, the envelopes corresponding to the noisy input

are not wider than the other ones. The width de-
pends essentially on the imprecision of the model.
This means that semiqualitative simulation acts as
a high frequency filter. This property has not been
carefully studied yet but should deserve attention
in view of fault detection applications.

2 2
1 1
5 5
& g
1 -1
2 . . . . 2 . . . .
0 10 20 30 40 50 0 10 20 30 40 50
time (s) time (s)

1 . 1 a\
M

5 L//JR 5 //»/Jt
%o N S M
-0.5 \ / -0.5] K\ W/

0 10 20 30 40 50 0 10 20 30 40 50
time (s) time (s)

Figure 4: Simulation without (left) and with (right)
noise

7 Conclusions and future

work

In this paper it has been shown that the existing
simulators for systems with structured uncertain-
ties provide envelopes which may or may not have
properties like completeness, soundness, stability,
etc. or not. Sometimes the properties are not even
known.

When the properties are known, the error of the
envelopes with respect to the exact one is unknown.
A method to obtain error-bounded envelopes is pro-
posed. It is based on the simultaneous compu-
tation of an underbounded envelope and an over-
bounded one. Two ways to control this error are
proposed as well: tightening the overbounded enve-
lope or widening the underbounded one. Both can
be achieved by means of Modal Interval Analysis.
The error of our envelopes can hence be adjusted to
the desired value. The computation effort of course
increases when the error decreases.

This method has been implemented in Matlab
and uses Maple and C routines. This facilitates
its future integration into a supervision frame-
work that is being developed based on Matlab and
Simulink. It is also planned to be used to improve



the prediction and fault detection algorithms of the
Ca”~En simulator [22].

An inconvenient of this method is that the com-
putation effort increases at each step of the simu-
lation. The exact envelope at a time point ¢ can
only be obtained by computing the range of the
function that relates the current time point to the
initial one, i.e. all the previous states must be con-
sidered in order to obtain the exact envelope. This
means that the procedure is not incremental. A
solution to overcome this problem is the use of a
shorter temporal window. Due to the dynamics of
the systems, it has been shown that the influence of
the previous states over the current one decreases
with time [19]. Hence, it should be possible to ob-
tain close results with a shorter temporal window
length. Saludes [19] recommends a window length
which essentially depends on the time constant of
the system.

A related problem is about the semantics of these
results. For instance, given an overbounded enve-
lope and an underbounded one at a time point ¢,
both can be used as the initial state for the func-
tion at time point £ + m. This means that four
approximations of the range of the function can
be obtained: over and underbounded approxima-
tions of the range of the function using over and
underbounded approximations of the initial state.
Each one of these four approximations has differ-
ent semantics and the most suitable one, if it exists,
has to be decided. This problem is still under in-
vestigation. It seems that the solution is simple
for overbounded envelopes. This envelope can be
obtained computing an overbounded range of the
function and using an overbounded initial state. As
the length of the temporal window increases, the
envelope gets closer to the exact one. The case of
underbounded envelopes is more complex and more
work remains to be done.

As it has been shown, a very interesting feature
of modal intervals is the semantics. A future work
is to study whether envelopes with different seman-
tics can be used not only to detect the faults but
also to localise the faulty parameter. For instance,
if a system has two physical parameters a and b, en-
velopes with the semantics ”for every a there exists
b so that...” or ”for every b there exists a so that...”
can be obtained. If a system is faulty and its out-
put belongs to only one of these two envelopes, it
should be possible to determine whether it is a or
b that is faulty.

Finally, in [4] it is claimed that it is not neces-
sary to study the evolution of all points belonging

to an uncertainty region to know the evolution of
the region. The study of the evolution of points
belonging to its surface is enough. The possible
application of this result to modal interval simula-
tion gives another direction for research.
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